Matrix inequalities for the difference between arithmetic mean and harmonic mean

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some More Inequalities for Arithmetic Mean, Harmonic Mean and Variance

We derive bounds on the variance of a random variable in terms of its arithmetic and harmonic means. Both discrete and continuous cases are considered, and an operator version is obtained. Some refinements of the Kantorovich inequality are obtained. Bounds for the largest and smallest eigenvalues of a positive definite matrix are also obtained.

متن کامل

The Arithmetic - Harmonic Mean

Consider two sequences generated by ",,+ i Mi"„<hn)hn*\ M'i"„+X,b„), where the a„ and b„ are positive and M and M' are means. The paper discusses the nine processes which arise by restricting the choice of M and M' to the arithmetic, geometric and harmonic means, one case being that used by Archimedes to estimate it. Most of the paper is devoted to the arithmetic-harmonic mean, whose limit is e...

متن کامل

Interpolating between the Arithmetic-Geometric Mean and Cauchy-Schwarz matrix norm inequalities

We prove an inequality for unitarily invariant norms that interpolates between the Arithmetic-Geometric Mean inequality and the Cauchy-Schwarz inequality.

متن کامل

Two Sharp Inequalities for Bounding the Seiffert Mean by the Arithmetic, Centroidal, and Contra-harmonic Means

In the paper, the authors find the best possible constants appeared in two inequalities for bounding the Seiffert mean by the linear combinations of the arithmetic, centroidal, and contra-harmonic means.

متن کامل

Comparison of Arithmetic Mean, Geometric Mean and Harmonic Mean Derivative-Based Closed Newton Cotes Quadrature

In this paper, the computation of numerical integration using arithmetic mean (AMDCNC), geometric mean (GMDCNC) and harmonic mean (HMDCNC) derivativebased closed Newton cotes quadrature rules are compared with the existing closed Newton cotes quadrature rule (CNC). The comparison shows that, arithmetic mean-based rule gives better solution than the other two rules. This set of quadrature rules ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Functional Analysis

سال: 2015

ISSN: 2008-8752

DOI: 10.15352/afa/06-3-16